Optimized Anti-pathogenic Agents Based on Core/Shell Nanostructures and 2-((4-Ethylphenoxy)ethyl)-N-(substituted-phenylcarbamothioyl)-benzamides

نویسندگان

  • Carmen Limban
  • Alexandru Mihai Grumezescu
  • Crina Saviuc
  • Georgeta Voicu
  • Gentiana Predan
  • Robert Sakizlian
  • Mariana Carmen Chifiriuc
چکیده

The purpose of this study was to design a new nanosystem for catheter surface functionalization with an improved resistance to Staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa ATCC 27853 colonization and subsequent biofilm development. New 2-((4 ethylphenoxy)methyl)-N-(substituted-phenylcarbamothioyl)-benzamides were synthesized and used for coating a core/shell nanostructure. Their chemical structures were elucidated by NMR, IR and elemental analysis, being in agreement with the proposed ones. Fe(3)O(4)/C(12 )of up to 5 nm size had been synthesized with lauric acid as a coating agent and characterized by XRD, FT-IR, TGA, TEM and biological assays. The catheter pieces were coated with the fabricated nanofluid in magnetic field. The microbial adherence ability was investigated in 6 multiwell plates by using culture based methods and Scanning Electron Microscopy (SEM). The nanoparticles coated with the obtained compounds 1a-c inhibited the adherence and biofilm development ability of the S. aureus and P. aeruginosa tested strains on the catheter functionalized surface, as shown by the reduction of viable cell counts and SEM examination of the biofilm architecture. Using the novel core/shell/adsorption-shell to inhibit the microbial adherence could be of a great interest for the biomedical field, opening new directions for the design of film-coated surfaces with improved anti-biofilm properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro evaluation of anti-pathogenic surface coating nanofluid, obtained by combining Fe3O4/C12 nanostructures and 2-((4-ethylphenoxy)methyl)-N-(substituted-phenylcarbamothioyl)-benzamides

In this paper, we report the design of a new nanofluid for anti-pathogenic surface coating. For this purpose, new 2-((4-ethylphenoxy)methyl)-N-(substituted-phenylcarbamothioyl)-benzamides were synthesized and used as an adsorption shell for Fe3O4/C12 core/shell nanosized material. The functionalized specimens were tested by in vitro assays for their anti-biofilm properties and biocompatibility....

متن کامل

Novel Hybrid Formulations Based on Thiourea Derivatives and Core@Shell Fe3O4@C18 Nanostructures for the Development of Antifungal Strategies

The continuously increasing global impact of fungal infections is requiring the rapid development of novel antifungal agents. Due to their multiple pharmacological activities, thiourea derivatives represent privileged candidates for shaping new drugs. We report here the preparation, physico-chemical characterization and bioevaluation of hybrid nanosystems based on new 2-((4-chlorophenoxy)methyl...

متن کامل

Novel N-phenylcarbamothioylbenzamides with anti-inflammatory activity and prostaglandin E2 inhibitory properties

A number of 2-((4-ethylphenoxy)methyl)-N-(substituted-phenylcarbamothioyl) benzamides (1a-h) were synthesized via reaction of 2-((4-ethylphenoxy)methyl)benzoyl isothiocyanate (2) as a key intermediate with several substituted primary aromatic amines. The new compounds were characterized by proton nuclear magnetic resonance ((1)H-NMR), carbon-13 nuclear magnetic resonance ((13)C-NMR), infrared s...

متن کامل

Bioevaluation of novel anti-biofilm coatings based on PVP/Fe3O4 nanostructures and 2-((4-ethylphenoxy)methyl)-N- (arylcarbamothioyl)benzamides.

Novel derivatives were prepared by reaction of aromatic amines with 2-(4-ethylphenoxymethyl)benzoyl isothiocyanate, affording the N-[2-(4-ethylphenoxymethyl) benzoyl]-Nꞌ-(substituted phenyl)thiourea. Structural elucidation of these compounds was performed by IR, NMR spectroscopy and elemental analysis. The new compounds were used in combination with Fe3O4 and polyvinylpyrrolidone (PVP) for the ...

متن کامل

2-aminotetralin-derived substituted benzamides with mixed dopamine D2, D3, and serotonin 5-HT1A receptor binding properties: a novel class of potential atypical antipsychotic agents.

A new chemical class of potential atypical antipsychotic agents, based on the pharmacological concept of mixed dopamine D2 receptor antagonism and serotonin 5-HT1A receptor agonism, was designed by combining the structural features of the 2-(N,N-di-n-propylamino)tetralins (DPATs) and the 2-pyrrolidinylmethyl-derived substituted benzamides in a structural hybrid. Thus, a series of 35 differently...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2012